Ciencia — 1 de julio de 2025 at 00:00

Fractales: arquetipos de la creación

por , ,

Fractales

 

Introducción

Una hoja de helecho, un copo de nieve, un pulmón o un riñón humano, una nube, la costa de Inglaterra… ¿qué tienen en común? «Fueron hechos perfectos y bellos por el creador de todas las cosas», diría posiblemente un escolástico medieval. Un matemático moderno dice: «son fractales».

Los fractales son estructuras geométricas que tienen la propiedad de repetir un mismo elemento geométrico o espacial en cada plano, una y otra vez. Un buen ejemplo de ello, en la naturaleza, es el helecho, cuyas hojas producen copias cada vez más pequeñas de sí mismas. Otro ejemplo de fractal lo presentó Apolonio de Perge —discípulo de Euclides, aproximadamente en el 200 a. C.—creando una figura compuesta de esferas cada vez más pequeñas.

Los fractales despiertan hoy un interés de carácter variadísimo. Se da entre artistas, periodistas, músicos y científicos. ¿Por qué? Desde luego, no porque los fractales posean —como de hecho es—mucha belleza y aun cuando su estética sea realmente innegable. Y desde luego, tampoco porque los fractales se cuenten entre los conceptos más modernos de la matemática, que tienen aplicación en muchos campos de la vida diaria y la tecnología. Más bien, pensamos que los fractales atraen a todos porque reflejan arquetipos universales que se expresan en todos los niveles de la creación. Se los encuentra en la naturaleza, en la evolución del cosmos y en los diferentes campos de la sociedad. En estas estructuras omnipresentes, el hombre también puede reconocerse a sí mismo y ver reflejado su propio camino. Que este viaje por el mundo de los fractales nos haga avanzar un paso más en el camino del conocimiento.

Autosemejanza en la naturaleza

Los fractales, sean de origen natural o creados matemáticamente, ofrecen un alto grado de autosemejanza. Autosemejanza significa aquí que se repiten formaciones a diferentes niveles de tamaño. Este es el caso, por ejemplo, cuando un objeto se compone de copias reducidas de sí mismo (por ejemplo, la esponja de Menger, una hoja de helecho simulada en un ordenador, el paquete de esferas de Apolonio de Perge o la curva de Koch). Esta propiedad se reproduce hasta el infinito en los fractales ideales construidos por cálculo matemático. Al contrario de las formas geométricas, en las que cuanto más se aumenta la visión más planas y —por lo mismo— más sencillas aparecen (por ejemplo, una circunferencia), en los fractales aparecen cada vez más detalles y más complejos.

La autosemejanza, en este caso, no tiene por qué ser perfecta. En los fractales naturales, la cantidad de niveles autosemejantes de estructuras es limitada y a menudo se sitúa entre 3 y 5. Ejemplos de esto pueden ser árboles, plantas, nubes, líneas costeras, rocas, arena, copos de nieve e incluso nuestro universo como conjunto, que muestra estructuras fractales de supergalaxias. Estas formaciones están estructuradas en menor o mayor medida en algunos niveles. Una rama, por ejemplo, tiene más o menos la apariencia de un pequeño árbol. La propiedad de la autosemejanza lleva también a que —por lo menos, a determinados niveles aumento— no se pueda decir qué tamaño tiene una sección que estamos contemplando, por ejemplo, en una foto. El mismo Benoit Mandelbrot habla de la geometría fractal de la naturaleza.

Filosofía de los fractales

* Como es arriba, así es abajo; como lo grande, así lo pequeño.

El concepto moderno de la autosemejanza refleja la sabiduría antigua de las leyes herméticas bajo una nueva forma. El conjunto de esas leyes (conocidas como la Tabla Esmeraldina) se atribuye al antiguo dios greco-egipcio de la sabiduría y las ciencias Thot-Hermes Trismegisto (el maestro tres veces grande). Su segunda ley dice en latín: «Quod est inferius, est sicut id quod est superius, et quod est superius, est sicut id quod est inferius, ad perpetranda miracula rei unius». La traducción aforística sería: «Como es arriba, así es abajo, y como abajo, así es arriba. Así en lo grande como en lo pequeño». Este principio de las correspondencias o analogías significa que la idea central de un ser se repite en diversos planos y de manera muy parecida. Lo vemos, por ejemplo, en la estructura septenaria del cosmos, que se refleja en la estructura septenaria del hombre, y esta, a su vez, en la estructura septenaria de cada cuerpo, y después en los subcuerpos, etc. Lo esencial se hace presente en todos los planos una y otra vez, y lo podemos descubrir en todos ellos. La autosemejanza es un aspecto científico de ese principio de la correspondencia.

La comparación de la autosemejanza entre los fractales naturales y los matemáticos nos enseña algo también: la autosemejanza en lo mental (es decir, en un fractal creado matemáticamente) es perfecta. Estructuras parecidas se repiten hasta en lo más pequeño. Y así también es el parecido del hombre (lo pequeño) con el cosmos (lo grande). Pero si contemplamos la realidad de lo material, entonces la autosemejanza es limitada en algunos niveles y no perfecta, tal y como lo vemos en los fractales naturales del mundo formal. El hombre formal es entonces solo un reflejo imperfecto de la creación cósmica y lo divino. Para llegar a ser perfectos, tenemos que elevarnos a lo puramente mental; en sentido amplio, a lo espiritual.

* Puente entre planos inmortales del ser.

Tal y como Benoit Mandelbrot reconoció, la denominación de fractal fue una elección desacertada, ya que el concepto viene del latín fractum, ‘quebrado, roto en partes, fraccionado’ y, como consecuencia, da la impresión de una unidad desgajada. Los fractales, sin embargo, hablan simplemente de complejidad, de unidad en la multiplicidad. No separan, sino que unen mundos que, para algunos filósofos, parecían inconexos, como micro- y macrocosmos, materia y espíritu, lo uno y lo múltiple, lo finito y lo infinito.

* Arquetipos del crecimiento y de la evolución.

Los fractales son arquetipos de la evolución que penetran tanto el micro como el macrocosmos. Su efecto se manifiesta en diversos planos de la realidad: en la naturaleza, en el cosmos y en la sociedad. El crecimiento utiliza patrones fractales. En el seno de viejas estructuras se forman otras nuevas, que corresponden en esencia a las antiguas, pero que también contienen una adaptación a las circunstancias actualizadas. Son las mismas de siempre, adaptadas al nuevo ambiente. Estas nuevas estructuras redundarán a su tiempo en impulsos de nacimiento de otras estructuras. Este mecanismo de la evolución no se da, ni con mucho, solo en lo físico. A menudo, se da también en la psique humana, en la que, por ejemplo, se reproducen patrones que el hombre repite continuamente variando la forma y a diferentes planos. Tales patrones pueden estar ya marcados desde el nacimiento, o bien desarrollarse a lo largo de la vida. Pueden ser tan fuertes que llegan a influenciar significativamente muchas decisiones y actuaciones en la vida, muchas veces de manera inconsciente.

Así es que, y de esta manera, se pueden formular patrones positivos en la conquista de nuevos territorios psíquicos, mentales o espirituales en pocos conceptos filosóficos, como valor para el cambio, fidelidad a uno mismo, no apegarse al pasado, entusiasmo místico, alegría, entrega… El alma, como fractal en sí misma, guarda posibilidades ilimitadas de renovarse cada día. Podemos nacer de nosotros mismos todos los días de nuevo. Y en cada día, en cada acción, se esconden todas las facetas del hombre. En cada momento se puede conocer toda la verdad. En cada acción se puede descubrir lo divino, lo esencial del hombre. Si este proceso natural se ve impedido, surge el estancamiento, que entonces puede llevar a problemas psíquicos como los miedos, complejos o incluso enfermedades psíquicas.

Todos conocemos el hecho de que casi todas las células del cuerpo humano se renuevan regularmente. Sin embargo, la importancia de un proceso como ese para la psique le es desconocida a muchas personas. Deberíamos aprender a ver el mundo con nuevos ojos en cada momento, con los ojos de la Afrodita de Oro (la eterna juventud del concepto griego), para liberarnos de clichés adquiridos, del peso de opiniones «absorbidas» y para entrar en contacto con el Dios en nosotros.

* Sinfonía de orden y caos.

La ciencia moderna ha reconocido que la visión mecánica determinista del mundo, como la que tuvo Newton, no corresponde a la realidad y que la «casualidad» juega un papel esencial en nuestro mundo. Los fractales son instrumentos matemáticos de la ciencia moderna que dejan más espacio al caos y a lo imprevisible. Por lo tanto, representan un puente entre caos y orden, de manera que allí donde reina el caos hay un lugar para el orden y viceversa. Esto significa que orden y caos son dos fuerzas inseparables y esenciales de la naturaleza, y que, inevitablemente, hay fases de orden y fases de caos. El cosmos respira, como el antiguo dios Brahma del mito de la creación hindú, y esa respiración se hace sentir hasta en lo microscópico. En este aspecto, los fractales aleatorios o casuales reflejan un patrón combinado de casualidad y orden. Nos dan la idea de que, en cada estructura, hay un lugar para el orden, igual que también es necesario un espacio para la casualidad.

Tanto si se trata de pequeños como de grandes ciclos de la historia de la humanidad o como si se habla de la vida de un solo ser, todo sigue la ley de la unidad inseparable de orden y caos. Esta ley nos enseña que incluso un plan perfecto tiene que dejar espacio para la improvisación y las sorpresas, y que para la autoorganización de la naturaleza hay que dejar abierta una cierta inestabilidad del orden. Esto es aplicable también a grupos de personas, los cuales deberían ser conducidos dejando siempre un espacio libre para la individualidad. El arquetipo de los fractales casuales da una respuesta a la eterna pregunta que el hombre se hace sobre el destino y la libertad, o sobre la combinación de predeterminación y casualidad en la vida humana. La respuesta es sencilla: ¡la vida se compone de ambas!


¿Sabías que…? Mandelbrot define fractal como «una forma geométrica irregular o fragmentada que se puede dividir en partes, cada una de la cual es una copia reducida de tamaño del conjunto». En la naturaleza se encuentran formas geométricas que no son fáciles de describir por la geometría tradicional o euclídea, como pueden ser las montañas, las nubes, las líneas costeras, las hojas y los árboles, los vegetales en general o los copos de nieve….

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

es_ESSpanish